[mgaddabte

Better loT Product Development
Using JavaScript on Microcontrollers

Andy Carle, PhD
Co-Founder, Product & Prototype Engineering

@PrototypingAndy andy@moddable.com

moddable

L “ -
i | _|

N S = ‘ [
s Sensing W Rin i Extra Hot/Cold [Extra High Heav Loud

Q Normal/Casual PRI = S = S:; Express Wash g , ' 4

StainTreat ; Lock Delay Start | Hot/Cold High 2 .
_ Bulky/Bedding ™ ® M Cold Clean i

0 ’ ‘ Warm/Warm ~ Medium Normal Soft
2 Rinse Heavy Duty = Sanitize Clean Washer Warm/Cold [l Low 5 s

Q Whitest Whites i Delicates ’5 Cold/Cold No Spin Light Off
Auto Soak Control Lock (")

CWash/Rimo S;;in Speodj Soil Lm.l L 0::./

POWER) e —— e START /PAUSE

@)ddabte

SAMSUNG

Photo: Samsung

[Eoddabte

User expectations lie somewhere in between:

* High-quality graphics.

* Responsive touchscreen interfaces.
*Seamless cloud connectivity.

* Product-relevant functionality.

At a mass-market price point.

@)ddabte

¥ e Esp-12s ||
C€0890 @ |

FCC ID:2AHMRESP12S T bl
ISM2.4G 802.11blgin || vt N

L eyt
” B T sl s 16, i, 3bd
e —— Mon Tue Wed . Thu i
IIIII..I-I...I...

ESP8266 QVGA IPS Display
80 MHz 32-bit microcontroller 240x320 QVGA

80 KB RAM 16-bit color

4 MB SPI Flash Storage Capacitive multitouch
Wi-Fi 40 MHz SPI

16x GPIO

Total cost of goods $10-$12 at volume of ~1000 units.

[Eoddabte

Modern microcontrollers are very capable and
inexpensive, but using them comes at a high cost
to your software teams.

* Silicon is a constantly moving target.
» Software SDKs from silicon providers are terrible.

* Display and input components can be difficult to
source consistently and require specialized drivers.

[Eoddabte

The answer?
Don’t target individual silicon solutions.
Target a well-designed portable runtime.

* Allows your organization to separate the HMI
implementation from the BSP.

* Similar approach to using Android on very expensive
hardware, but for mainstream products.

@)ddabte

Recent JavaScript engine engineering breakthroughs
have made it possible to run full, modern JavaScript
on inexpensive microcontrollers.

[Eoddabte

The XS JavaScript engine is optimized to
minimize memory and storage footprint.

* Runs well in as little as 32 KB of RAM.
* Hundreds of times less RAM than other major engines.

* Minimizes flash usage with clever pre-processing of code
and application assets.

* Implements the full ECMAScript 2019 standard.
* Consistently ahead of many web browser engines.

* Open source: https://github.com/Moddable-
OpenSource/moddable/tree/public/xs

https://github.com/Moddable-OpenSource/moddable/tree/public/xs

@)ddabte

Now that it is an option, JavaScript is a hatural
fit for embedded application development.

[Eoddabte

Concentrate complexity in the engine
and runtime, not in application code.

* The engine and runtime only have to be
developed well once and countless JavaScript
apps and products can benefit from that work.

[Eoddabte

t is much easier to write performant code
in JavaScript than in C or C++.

* Run loop tuning is taken care of in the engine.

* Common areas of embedded inefficiency are covered
by highly-optimized JavaScript modules:
 graphics libraries
* networking stack
* file system operations

@Jddabte

Working in JavaScript is inherently more secure
than starting from scratch in native languages.

 Security-critical native code only needs to be written once and
can be inspected all in one place.

* It is impossible to write common security errors like buffer
overflows and accessing uninitialized memory in JavaScript.

* Application code is more concise and less error-prone.

@Jddabte

-~

avaScript has la

nerfect for 10T a

nguage features that are

oplication development.

* JavaScript has excellent support for asynchronous and
event-based design patterns that fit well with sensor- and
network-driven devices.

* Objected oriented languages work well for user interface

construction.

* Networking is built in and parsing JSON data from cloud
services is built into the language.

[Eoddabte

Building apps in JavaScript is easier for
developers than working in native languages.

* Developers can stop worrying about implementation details
like memory management and building fundamental
runtime components.

* Instead, they can focus on making great products.

@)ddabte

Building embedded applications with JavaScript
makes entire organizations work better.

@Jddabte

Because JavaScript is much easier to work with,
it is much easier to find JavaScript developers
than traditional embedded developers.

e Recruiting traditional embedded engineers is becoming harder
every day.

* The massive popularity of JavaScript on the web and servers
(i.e. Node.js) has created a huge pool of potential embedded
JavaScript developers.

[Eoddabte

JavaScript code is portable across
multiple products and platforms.

* Apps written in JavaScript for one device can easily be
ported to another as business needs change.

* Target devices can be radically different without
needing any changes to the application code.

@Jddabte

Scripting enables radically different
product design processes and reduces
overall product development cycles.

* Ease of development allows rapid prototyping of
products with production-quality implementations.

* Desktop simulation is game-changing for embedded
developers and removes build/deploy cycles from day-
to-day development entirely.

[Eoddabte

JavaScript components are reusable
and easy to maintain.

e JavaScript has a language feature to support
modules, which cleanly encapsulate functionality.

e Useful components, such as Ul elements or business
logic, can be maintained independently and used
across many products.

@)ddabte

Building loT applications in JavaScript allows
your organization to work in the context of a
massive open source effort.

* Thousands of JavaScript modules exist in open source
repositories, many of which are relevant for loT product
development.

* Ecma TC53 is working to standardize a core set of modules for
embedded systems to give manufacturers and silicon vendors
a common target for support.

@)ddabte

You can build beautiful and responsive
user interfaces in JavaScript using open
source modules.

@)ddabte

The Commodetto graphics rendering engine
delivers high frame rates on extremely
inexpensive hardware.

* Capable of efficiently rendering a single scanline at a time, so no
frame buffer is required on the microcontroller.

* Includes asset loaders for images and fonts.

* Pixel Output modules deliver rendered pixels to displays, files, and
network streames.

e Open source: https://github.com/Moddable-
OpenSource/moddable/tree/public/modules/commodetto

https://github.com/Moddable-OpenSource/moddable/tree/public/modules/commodetto

@Jddabte

See these examples animated at:
https://github.com/Moddable-OpenSource/moddable/blob/public/examples/commodetto/readme.md

https://github.com/Moddable-OpenSource/moddable/blob/public/examples/commodetto/readme.md

[Eoddabte

The Piu user interface framework lets
developers construct a hierarchy of objects to
define layouts and contents.

* Unusual for embedded development, which often uses simple 2D graphics APIs.

* Rich feature set makes for easy app development:
e Cascading styles
* Event-driven behaviors

e Robust font support
* Built-in tools for animations, transitions, and responsive layouts

* Open source: https://github.com/Moddable-
OpenSource/moddable/tree/public/modules/piu

https://github.com/Moddable-OpenSource/moddable/tree/public/modules/piu

@)ddable

Watch this video at https://www.youtube.com/watch?v=JhRyMoUbmXA

https://www.youtube.com/watch?v=JhRyMoUbmXA

@)ddabte

Piu Object Construction

let multiColoredSkin = new Skin({ fill: ["black", "white", "red"] });
let blackContent = new Content(null, {
top: 20, left: 20, width: 80, height: 80,
skin: multiColoredSkin, state: 0,
1)
let redContent = new Content(null, {
top: 20, left: 120, width: 80, height: 80,
skin: multiColoredSkin, state: 2
1)
let grayContent = new Content(null, {
top: 20, left: 220, width: 80, height: 80,
skin: multiColoredSkin, state: 0.5
1)
application.add(blackContent);
application.add(redContent);
application.add(grayContent);

@)ddabte

Piu Prototype Hierarchy

Application.prototype

Behavior.prototype

Container.prototype

Column.prototype

Content.prototype

Label.prototype

Layout.prototype

Die.prototype

Object.prototype

Skin.prototype

Port.prototype

Row.prototype

Style.prototype

Te xt.prototype

Scroller.prototype

Texture.prototype

Transition.prototype

Heat to /5°

P

const DefaultHomeScreen = Column.template($ => ({
top: 0, bottom: @, left: 0, right: 0
}));

Label

Heat to 75°

contents: [
Label($, {
left: 0, right: 0, height: 40, string:"Heat to 75°",
style: OpenSans26

Column

Heat o /5°

Column($, {
top: 0, bottom: 0, left: 0, right: 0, skin: blueSkin
1),
Row($, {
left: 0, right: 0, height: 62, skin: blackSkin
’)

Content

Heat to 75°

O contents: [
= Content($, {
active: true, top: 20, skin: upSkin
r),
Label($, {
top: @, bottom: @, style: OpenSans1@@
¥,

Content($, {
active: true, bottom: 20, skin: downSkin

¥,

Heat to 75°

contents: [
Content($%$, { skin: fanSkin, left: 50,

top: 8, width: 40, height: 40}),
Content($, { skin: heatSkin, right: 50,

top: 8, width: 40, height: 40})

Content |

const DefaultHomeScreen = Column.template($ => ({
top: 0, bottom: @, left: @, right: 0,
contents: [
Label($, {
left: @, right: @, height: 40, string:"Heat to 75°",
style: OpenSans26
1)
Column($, {
top: 0, bottom: @, left: @, right: @, skin: blueSkin,
contents: [
Content($, {
active: true, top: 20, skin: upSkin
1)
Label($, {
top: @, bottom: @, style: OpenSansl0@
1)
Content($, {
active: true, bottom: 20, skin: downSkin
1),
]
1)
Row($, {
left: @, right: @, height: 62, skin: blackSkin,
contents: [
Content($, { skin: fanSkin, left: 580,
top: 8, width: 40, height: 40}),
Content($, { skin: heatSkin, right: 50,
top: 8, width: 40, height: 40})

|
|

YIRP -

const textStyle
const whiteSkin new Skin({ fill: "white" });
const blueSkin = new Skin({ fill: "blue" });

class ButtonBehavior extends Behavior {
onTouchBegan(content) {
content.state = 1;
}

onTouchEnded(content) {
content.state = 0;
content.next.delegate("onButtonTapped”);

}

class LabelBehavior extends Behavior {
onButtonTapped(label) {
Lf (label.string.length === @) label.string = "Moddable”;
else label.string = label.string.slice(l);

}

const SampleApp = Application.template($ => ({
top: @, bottom: 0, left: @, right: @, skin: whiteSkin,
contents: [
Content($, {
active: true, top: 40, height: 100, width: 100,
skin: new Skin({ fill: ["#e6ff33", "#0@66ff"] }),
Behavior: ButtonBehavior

1),
Label($, {
bottom: 40, style: textStyle, string: "Moddable”,
Behavior: LabelBehavior
)
]
1))

export default new SampleApp({}, {touchCount: 1});

new Style({ font:"semibold Z28px Open Sans™, color:

“"black” });

(3
Moddable

let screenl = new Column{null, {
top: @, bottom: @, left: @, right: 0,
skin: new Skin({ fill: "blue" }),
contents: [
Label(null, {
top: @, height: 40, left: @, right: 0,
string: "Screen 1"
¥,
Content(null, {
top: @, bottom: @, left: @, right: 0,
skin: new Skin({ fill: "white" })
¥,

]
Y

let screen2 = new Column{null, {
top: @, bottom: @, left: @, right: 0,
skin: new Skin({ fill: "red" }),
contents: [
Label(null, {
top: @, height: 40, left: @, right: 0,
string: "Screen 2",
¥,
Content(null, {
top: @, bottom: @, left: @, right: @,
skin: new Skin({ fill: "white" })
¥,

Y

let screenl = new Column(null, {
top: @, bottom: @, left: @, right: 0,
skin: new Skin({ fill: “"blue" }),
contents: [
Label(null, {
top: @, height: 40, left: @, right: @,
string: "Screen 1"
X)),
Content(null, {
top: @, bottom: @, left: @, right: 0,
skin: new Skin({ fill: "white" })

let screen2 = new Column(null, {
top: @, bottom: @, left: @, right: 0,
skin: new Skin({ fill: "red" }),
contents: [
Label(null, {
top: @, height: 40, left: @, right: @,
string: "Screen 2"
¥,
Content(null, {
top: @, bottom: @, left: @, right: 9,
skin: new Skin({ fill: "white" })
¥,

let BasicScreen = Column.template($ => ({
top: @, bottom: @, left: @, right: 0,
skin: new Skin({ fill: $.headerColor }), style: sampleStyle,
contents: |
Label(null, {
top: @, height: 40, left: @, right: 0,
string: $.title
1,
Content(null, {
top: @, bottom: @, left: @, right: 0,
skin: new Skin({ fill: "white" })
),

let screenl = new BasicScreen({ let screen2 = new BasicScreen({
title: "Screen 1", title: "Screen 2",
headerColor: "blue" headerColor: "red"

r); r);

@)ddabte

JavaScript can radically improve the way your
organization develops HMI software.

* Recent JavaScript engine engineering breakthroughs have made
it possible to run full, modern JavaScript on inexpensive
microcontrollers.

* Now that it is an option, JavaScript is a natural fit for embedded
application development.

* Building embedded applications with JavaScript makes entire
organizations work better.

* You can build beautiful and responsive user interfaces in
JavaScript using open source modules.

@)ddabte

Get started with the Moddable SDK:

e Open source: https://github.com/Moddable-OpenSource/moddable

 Start on the simulator and then move to Moddable development boards,
available at Moddable.com

Moddable One Moddable wo Moddable [hree

https://github.com/Moddable-OpenSource/moddable

Scripts & Things

07 Jg\ A\ N Spe

—
LY) —~ ~1©)
e NI N 4 (N4 N =
AT
{
Bl w

Meets monthly in Downtown Palo Alto.

https://www.meetup.com/Scripts-and-Things

[mgaddabte

Better loT Product Development
Using JavaScript on Microcontrollers

Andy Carle, PhD
Co-Founder, Product & Prototype Engineering

@PrototypingAndy andy@moddable.com

