
Using JavaScript to Enable 
Modern User Experiences 

on Inexpensive HMIs
Andy Carle, PhD

Co-Founder, Product & Prototype Engineering

@PrototypingAndy andy@moddable.com





Photo: Samsung



ESP8266  

80 MHz 32-bit microcontroller 
80 KB RAM
4 MB SPI Flash Storage
Wi-Fi
16x GPIO

QVGA IPS Display  

240x320 QVGA
16-bit color
Capacitive multitouch
40 MHz SPI

Total cost of goods $10-$12 at volume of ~1000 units.









Modern microcontrollers are very capable 
and inexpensive, but using them comes at 
a high cost to your software teams.

• Silicon is a constantly moving target.
• Software SDKs from silicon providers are terrible.
• Display and input components can be difficult to 

source consistently and require specialized drivers.



The answer? 
Don’t target individual silicon solutions. 
Target a well-designed portable runtime.

• Allows your organization to separate the HMI 
implementation from the BSP.
• Similar approach to using Android on very 

expensive hardware, but for mainstream products.



Recent JavaScript engine engineering breakthroughs 
have made it possible to run full, modern JavaScript 
on inexpensive microcontrollers. 



• Runs well in as little as 32 KB of RAM.
• Hundreds of times less RAM than other major engines.

• Minimizes flash usage with clever pre-processing of 
code and application assets.
• Implements the full ECMAScript 2019 standard.
• Consistently ahead of many web browser engines.

• Open source: https://github.com/Moddable-
OpenSource/moddable/tree/public/xs

The XS JavaScript engine is optimized to 
minimize memory and storage footprint.

https://github.com/Moddable-OpenSource/moddable/tree/public/xs


Now that it is an option, JavaScript is a natural fit for 
embedded application development.



Concentrate complexity in the engine and 
runtime, not in application code.

• The engine and runtime only have to be developed 
well once and countless JavaScript apps and 
products can benefit from that work.



It is much easier to write performant 
code in JavaScript than in C or C++.

• Run loop tuning is taken care of in the engine.
• Common areas of embedded inefficiency are

covered by highly-optimized JavaScript modules:
• graphics libraries
• networking stack
• file system operations



Working in JavaScript is inherently more 
secure than starting from scratch in 
native languages.

• Security-critical native code only needs to be written 
once and can be inspected all in one place.
• It is impossible to write common security errors like

buffer overflows and accessing uninitialized memory in 
JavaScript.
• Application code is more concise and less error-prone.



JavaScript has language features that are 
perfect for IoT application development.

• JavaScript has excellent support for asynchronous and 
event-based design patterns that fit well with sensor-
and network-driven devices.
• Objected oriented languages work well for user 

interface construction.
• Networking is built in and parsing JSON data from cloud 

services is built into the language.



Building apps in JavaScript is easier for 
developers than working in native 
languages.

• Developers can stop worrying about 
implementation details like memory management 
and building fundamental runtime components.
• Instead, they can focus on making great products.



Building embedded applications with JavaScript makes 
entire organizations work better.



Because JavaScript is much easier to work 
with, it is much easier to find JavaScript 
developers than traditional embedded 
developers.
• Recruiting traditional embedded engineers is

becoming harder every day.
• The massive popularity of JavaScript on the web

and servers (i.e. Node.js) has created a huge pool of
potential embedded JavaScript developers.



JavaScript code is portable across 
multiple products and platforms.

• Apps written in JavaScript for one device can easily 
be ported to another as business needs change.
• Target devices can be radically different without 

needing any changes to the application code.



Scripting enables radically different 
product design processes and reduces
overall product development cycles.

• Ease of development allows rapid prototyping of 
products with production-quality implementations.
• Desktop simulation is game-changing for 

embedded developers and removes build/deploy 
cycles from day-to-day development entirely.



JavaScript components are reusable and 
easy to maintain.

• JavaScript has a language feature to support 
modules, which cleanly encapsulate functionality.
• Useful components, such as UI elements or 

business logic, can be maintained independently 
and used across many products.



Building IoT applications in JavaScript 
allows your organization to work in the 
context of a massive open source effort.

• Thousands of JavaScript modules exist in open 
source repositories, many of which are relevant for 
IoT product development.
• Ecma TC53 is working to standardize a core set of

modules for embedded systems to give 
manufacturers and silicon vendors a common 
target for support.



You can build beautiful and responsive user interfaces 
in JavaScript using open source modules.



The Commodetto graphics rendering 
engine delivers high frame rates on 
extremely inexpensive hardware.

• Capable of efficiently rendering a single scanline at a time, 
so no frame buffer is required on the microcontroller.
• Includes asset loaders for images and fonts.
• Pixel Output modules deliver rendered pixels to displays, 

files, and network streams.
• Open source: https://github.com/Moddable-

OpenSource/moddable/tree/public/modules/commodetto

https://github.com/Moddable-OpenSource/moddable/tree/public/modules/commodetto




The Piu user interface framework lets 
developers construct a hierarchy of 
objects to define layouts and contents.

• Unusual for embedded development, which often uses simple 2D 
graphics APIs.
• Rich feature set makes for easy app development:

• Cascading styles
• Event-driven behaviors
• Robust font support
• Built-in tools for animations, transitions, and responsive layouts

• Open source: https://github.com/Moddable-
OpenSource/moddable/tree/public/modules/piu

https://github.com/Moddable-OpenSource/moddable/tree/public/modules/piu




Piu Object Construction



Piu Prototype Hierarchy

























JavaScript can radically improve the way your 
organization develops HMI software.
• Recent JavaScript engine engineering breakthroughs have 

made it possible to run full, modern JavaScript on 
inexpensive microcontrollers. 
• Now that it is an option, JavaScript is a natural fit for 

embedded application development.
• Building embedded applications with JavaScript makes 

entire organizations work better.
• You can build beautiful and responsive user interfaces in 

JavaScript using open source modules.



Scripts & Things

Meets monthly in Downtown Palo Alto.

https://www.meetup.com/Scripts-and-Things



Using JavaScript to Enable 
Modern User Experiences 

on Inexpensive HMIs
Andy Carle, PhD

Co-Founder, Product & Prototype Engineering

@PrototypingAndy andy@moddable.com


